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Consequently, in view of the theorem on an implicit function /5/, for small E in the space 
A there is a solution s(r,cp,e) of the equation F(S (r,cp,c), E)= 0, which differs only slightly 
from So. The theorem is proved. 

Returning to the old variables XI and x2, we obtain at least a function of the class C"'. 
The solutions obtained, as in Sect-Z, define the manifolds y= &%/ax of the phase trajec- 
tories of asymptotic motions (compare with /2/). 
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PERIODIC SOLUTIONS OF HAMILTONIAN SYSTEMS IN CERTAIN DEGENERATE CASES* 

YU.V. BARKIN and A.A. PANKRATOV 

Periodic sclutions of a canonical system of differential equations with 
a special type Hamiltonian, i.e. of the so-called fundamental problem of 
dynamics /I/, are investigated. A method of constructing the conditions 
of periodicity of the solutions is given and a non-linear analysis of 
the solutions is carried out. The method enables the Poincare's classical 
conditions of existence, as well as of the new conditions of existence 
of periodic solutions in degenerate cases to be derived. The cases of 
degeneracy discussed here appear very frequently in various problems of 
dynamics. The results obtained are illustrated by finding new periodic 
solutions for the problem of the motion of a heavy rigid body about a 
fixed point. 

1. Formulation of the Frobkm. Consider the following system of canonical dif- 
ferential equations: 

(1.1) 

I = (pt..., pi)=, J = (pr+m . . . , pN)T, p = (PI, . . . t PN)= = (1, JF 
tp = (41, . , * t qrF* 9 = (qf+lY * . * 3 q.vY* 
q=(q1,. . . t qNjT = (% \plT 
H (p, q, t, IL) = Ho (I) + pH, (p, q, t) + . . ‘7 I I’ I % 1 ,(1.2) 

Let H be an analytic function of the position variables p, the canonical angle variables 
q and the time t, in the region D x TN x T', where D is a bounded connected region RN {pt, 
. . ., piv} of the N-dimensional plane, TN {PI, . . . . q.v mod2n) is an N-dimensional torus and 
T1 (t mod To}. Then the functions Hi(p,q, t)(i> 1) can be expanded in convergent Fourier 
series over the multiple angle variables g and Qt(O _r 2.niT, is the fundamental frequency and 
T0 is the period) 

*Prikl.Matem.Mekhan.,51,2,235-243,1987p 



Hi (P, q, t) = (‘, ‘n”“‘(i, J)cos(k(‘+p _t k’*‘~+k,~+@)+ 
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(1.3) 

H?" 'N+l) (I, J) sin (k”‘tp + k’l’g + ~~~~~~) t 

kc’) = (ki, . . ., k,). k (2) =(kt+,, . . . , k,y), k = (k”‘, k’“‘) 

k{EZ (i=i,...,N+ i), ,,k,,=,,k"',,+ IIk'P'/i=i$llkil 

Eqs.fl.l)-(1.3) represent an important example of a system of differential equations 
close to integrable which frequently arise in celestial mechanics. 

The right-hand sides of Eqs.(l.l)-(1.3) are To-periodic functionsoftime. The fundamental 
problem studied in this paper is whether the equations have periodic solutions with period T 
which is a multiple of To,at least for sufficiently small values of the parameter p. 

Poincar$ obtained the sufficient condition for the existence of periodic solutions of 
Eqs.(l.l)-(1.3) in a form suitable for practical applications. However, in a number of 
practical cases (e.g. in problems of the translational and rotational motion of satellites) 
the classical Poincard conditions do not hold. The question of the existence of periodic 
solutions in such cases (in what follows we shall call these cases singular or degenerate) 
remains, generally speaking, an open one. 

Below we study the cases when the Poincare-averaged function Hz depends on the generating 
values of some of the variables only. Similar cases are encountered in many problems of 
celestial mechanics, for example in the study of high-order resonances. 

When p=O, (l.l)-(1.3) yields a generating (unperturbed) system of equations whose 
general solution is 

Here IO, JO, CPO, 90 are arbitrary constants of integration, and n is a column vector of 
the frequencies of the unperturbed solution. 

Let us suppose that (plf@,..., p$@))T = a, are found such that the corresponding frequencies 
will be rationally commensurable with 8, i.e. 

(n(O) (al), QT - c (kl, . . . , i;,, &+l)T, n(o)= - dHopalT (1.4) 

Here c# 0 is an arbitrary constant pi EZ and ICM (k,, . . .) ftl, tit+>) = 1. Then we shall 
call the solution of the unperturbed system corresponding to a1 according to Poincare), periodic 
wifh period T = 2nkj~+,/~. The solution (or, more accurately, a family of periodic solutions), 
is given by the formulas. 

I=al, J--Jo, cp = n@)t 4. ~0, $i = q. (1.5) 

We shall seek the T-periodic solutions of the initial system (l.l)-(1.3) which will 
transform to the solution (1.5) when p==O. It i s possible that such solutions exist only 
for some specified values of J,,q, and $,. We shall call them the generating solutions and 
denote them by a,, 01 an do 2 respectively: We shall also call the periodic solution of the 
unperturbed system 

I=al, J=a2, cp=n@)t f m, $i=oa 0.6) 

to which the T-periodic solution of the system (l.l)-(1.3) tends as p -, 0, the generating 
solution. 

Let us consider the general solution of system (l.l)-(1.3) using Poincare/ theorem /l/. 

Theorem 1. Let the following system be given: 

g = x (x, t, p) EE X(O) (x, t) + px”’ (x, t) f pax’*’ (x, t) + . . . (1.7) 
X=(51r...t5N)T, x 6, t, p) = (Xl, X2, . . . , X&y 

Then, provided that: 1) when p = 0, the system (1.71 has a solution x = x@J (t) analytic 
when It - to 1 <h; 2) the function 2(x, t, it) . 1s analytic in the region 
f-K% !%?) 

Gx (to---h, tofh) x 
where G denotes the neighbourhood of the set {xEA": x=x(*)(t), It- to l<h}; 3) 

the parameters p and V,(S = 4,...,N) are sufficiently small in modulus, where !J 6% (-9% P.), 

v, = 5, ($0) -I, (')(t,),& (to) and r,(O)(to) are the initial values of the variables for the solution 
sought and for the generating solution, t.Q,en when p # 0, tE (to -h,to -f- h), then the solution 
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of system (1.7) will be represented by the following, absolutely convergent series: 

2 s (t) = d”) (t) + s 

In -= (ml, .( m&r), 7ni = 0, 1, 2, . (i = 1, 2, ., iv + 1) 

In particular, when x,(t,,)=& (‘)(to) then the solution of (1.7) will have the form , 

(I.81 

1.9) 

The results of the above theorem can be extended at once to the system of canonical Eqs. 

(l.l)-(1.3). 
Therefore the solution of (l.l)-(1.3) with arbitrary initial conditions 

t=O, I--I,,, J=Jo, ‘p=‘to, +==qx, (1.10) 

i.e. the general solution for sufficiently small p, is represented by the absolutely convergent 
series of the form (1.9) 

cp =nt + 'FO + m., /~""~rn(Io, Jo> at t 'PO. $0, t) 

UT = (IT, JT, -- q?), UsT= (IsT, JsT; - $sT) (s=n, 1,2,. . .) 

We note that by virtue of the choice of initial conditions we have 

t=o, I,=cp,=O, J,xx$,,-0 (m31,2,. .) 

The series (1.11) are convergent in the time interval t E(--h,h) (for sufficiently low 
values of fL, h> T) and their coefficients are found by integrating a known sequence of 

systems of differential equations. 

2. A method of studying the conditions of periodicity of the solutions. 
The solution (1.1) will be T-periodic if and only if the following conditions hold: 

U(T)-U(O)=O, q(T)-9((O)-n@)T=O (2.1) 

We obtain the solution of Eqs.(l.l)-(1.3) with initial conditions 

IO = al + fh, Jo=al + fin, $O=WI + 71, @o=o~ + y3 (2.2) 

where fil,fil,yl,yz are small quantities, directly from formulas (1.11). The solution will be 

represented by the series 

(2.3) 

The quantities I%, I%, ~1, vz have the same meaning as the parameters Y, in Poincar&'s 

theorem. This means that we can arrive at a series of the form (1.8) also by expanding the 

coefficients I,,,, J,, cp,, g,,, of the solution (2.3) in series in powers of f11,&,Ylr1)2. To find 

the coefficients of the series (2.3) it is sufficient, first to construct a solution of (l.l)- 

(1.3) in the form of the series (l.ll), and then replace the initial conditions in them accord- 

ing to formulas (2.2). 
Substituting series (2.3) into the conditions of periodicity (2.1), we obtain 

Yu,(Bl, th. y17 yn, p) = U(T) - u (0) = NJ1 (V + IL% V) + .a* = 0 42.4) 

W (pl, B2, yl, yY3, p) = cp (T) - cp (0) - nto)T = 

(n-n@))T+p’pl(T)+...=O 

Next we construct Eqs.(2.4) in explicit form (with the necessary accuracy of up to p,v, CL) 

and apply the theorem on implicit functions. 
In order to construct Eqs.(2.4), we must determine the coefficients of the series (2.3) 

and their values at the instant of time t = T. The coefficients will be known, if we construct 
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the solution in the form (1.11). The coefficients of series (1.11) in turn are determined as 
a result of integrating a known sequence of systems of differential equations (we omit these 
equations for brevity). The computation of the functions I,(t), J, (t), qm(t), q,,,(t) (m = 1, 2, 
. . -) is reduced to quadratures. 

Further, using the coefficients I,, J,,cp,,$, computed up to the prescribed order and 
the substitution (2.2), we construct the conditions of periodicity of (2.4) in the form of 
series in powers of the small quantities fi,r,/I to the required accuracy. 

Thus the method of investigating the conditions of periodicity consists of the following 
sequence of operations; 

lo. We construct the first terms of the series (1.11) representing the general solution 
of Eqs.(l.l)-(1.3). 

2O. We find the values of the coefficients of these series for the instant of time t = T. 

X0. Using the substitution (2.2) we write the conditions of perodicity in the from (2.4) 
and carry out the necessary expansions in powers of the small parameters pi, yi, p. 

40 Using the corresponding theorems on implicit functions, 
representing the conditions of solvability of Eqs.(2.4). 

we derive analytic formulas 

We note that Proskuryakov used the same method when studying the periodic solutions of 
quasilinear systems /2/. Unlike in /2/, the present method is developed for the non-linear 
systems (l.l)-(1.3) whose frequencies depend on the amplitudes. 

The method can be made very flexible and efficient by using, at various stages of the 
investigation of periodicity, not all the substitutions (2.2) simultaneously, but only some 
of them. 

We can obtain the following representations for the fundamental coefficients of (2.4): 

Here 

J 
In (2.5) and further formulas in this paper we represent the periodic functions f = ](a,, 

O, n(')t t %, %, t) by f = <f> + (f), where 

(i)=+fl(t)dt 
0 

is a constant component of the function f and (f} is its purely periodic part. 

3.. Classical conditions of existence. Expanding the coefficients of the first 
approximation in (2.5) in series in powers of the small quantities pl,yi, we write the con- 
ditions of periodicity in the form 

%oT = (aT, 6hT, aaT) 
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We can determine pl, fiz, yl, yz from system (3.1) as holomorphic functions of the parameter 

PL, provided that the equations contain no free terms and the determinant of the coefficients 

accompanying the unknowns is different from zero. As a result we obtain the classical con- 

ditions of Poincar;. 

Theorem 2. Eqs.(l.l)-(1.3) have periodic solutions with period T = 2nh-~+~/S1, generated 

from the solution (1.6), if the parameters a and 0 of this solution satisfy the conditions 

(n(")T(al),Q)=c(~~,...,fc,,~N+,j, c#O, &EZ (3.2) 

(3.3) 

(3.4) 

#U (3.5) 

I 

The periodic solutions are represented by series in integral powers of the parameter p, 

converging for all values of time t, provided that the value of p is sufficiently small. 

4. Conditions for the existence of periodic solutions in some special cases. 
In a number of problems of celestial mechanics the function <HI> is independent, for the 

specified commensurabilities of the frequencies (1.4), of the generating values of the variables 

Jo, cpo, qo, i-e. 
<HI (al, JO, ‘pa, 90)) = <Hl(ad) (4.1) 

(in particular, the function (HI) may be identically equal to zero (see e.g. /4/) or depend 

on some of the quantities only). In this case conditions (3.3) are satisfied identically, 

but condition (3.5) does not hold. This, naturally, does not imply that there are no periodic 

solutions for the commensurabilities mentioned above. In this case we must obtain new 

sufficient conditions of existence, and we derive them below. 

Using formulas (2.5) and taking condition (4.1) into account, we can write the necessary 

and sufficient conditions for the existence of periodic solutions of (2.4) as follows: 

(4.2) 

a (HI) a (Hz) - 
hT 

+- 
abT 

+ . . . . 0 

yz- - a'Ho - -T= y$31+r(Jp-y7% 
aa,aa, 

am & 

acpoT I ) + -0 . ..- 
t=o 

Let condition (3.4) hold. Then the second equation of (4.2) will yield 

B1=lJ ((5 *dq_,-(*)-‘-y$) +P(...) 

Substituting this result into the first equation of (4.2) and carrying out the necessary 

reduction, we obtain 

(4.3) 

Using conditions (2.3), we expand the left-hand sides of Eqs.(4.3) in series in powers 

Here 

(4.4) 

(4.5) 
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Now using the theorem on implicit functions, we shall formulate the conditions for the 
existence of periodic solutions for the case in question , in the form of the following theorem. 

Theorem 3. When (4.1) is degenerate, Eqs.(l.l)-(1.3) have T-periodic solutionsgenerated 
from solution (1.6), provided that the parameters a and w of this solution satisfy the 
conditions 

<rp>+y 
det L%?- 

I/ ag -+ 

when conditions (4.6) hold, the system of Eqs.14.2) yields uniquely the quantities 01% Bz, 

P1r tz as holomorphic functions of the parameter p. The periodic solutions are represented 
by series in integral powers of p, converging at low values ofthisparameter over the whole 
time interval tCz(---oo, j-W). 

In exactly the same manner we consider a more general special case when the function 
(HI> depends only on some of the quantities appearing in Jo,(po,~o, i.e. 

<HI) = (HI (Jo*, cpo*, qo*)> 

Jo* = (P&, . * . , &)T, qJo* = (&‘, . . . 1 qiy, rpo* = (9% . . . , &bf* 

(~rcs,+t, . . . , PH)~ = J**, @,+I, . . . 141) = qt**, 

(‘?l+sa+D * , . v 4N)T = g** 

J =c; (J*, J**)T, ‘p = (cp*, I$‘*)~, 9 = (I&*, $**)T 

(4.7) 

We denote the corresponding generating values of the variables introduced above, as 
follows: 

J* L- azlt J** = az2, ‘p* -_ alI, q~** = WIZ, 9* = WU, g** = OSP 

801~ = (02, fd, aPIT), %OIT = (fmT, 0~2~~ a2P) 

The method of Sect.2 are used to ascertain the existence of periodic solutions in the 
present case. Quitting for brevity the analysis of the conditions of periodicity (2.4), we 
formulate the final 

Theorem 4. In 
from solution (1.6) 

result as the following theorem. 

the special case (4.7) Eqs.(l.l)-(1.3) admit T-periodic solutionsgenerated 
whose parameters a and o satisfy the conditions 

(nf*) (al), QT = c(.k, . . . , kt, k~+$’ 

5. Periodic solutions, degenerate in the (8 -i)-th approximation. Within 
the specified connnensurability of the unperturbed frequencies (1.4) we may encounter the 
case in which the conditions of periodicity of the solutions of the equations for the first 
S - 1 -approximations Ii,Jit** (i = 1, . . . . S - I) will be satisfied identically, and the 
resonant terms will appear in condition (2.41 only for fs,Js,*~. We shall call the periodic 
solutions with the above property provisionally degenerate in the (s- i)-th approximation. 

The conditions for the existence of the periodic solutions in question are obtained as 
a result of studying the terms of (2.4) up to the order ps, with help of the methods of Sect.2. 



Omitting the technical details of constructing these conditions, we formulate the final result 
as follows. 

Theorem 5. Eqs.(l.l)-'El.3) have T-periodic solutions, degenerate in the (s- I)-th 
approximation, generated from (1.6), provided that the quantities a and o satisfy the con- 
ditions 

(n(O) (ad, QJr = c (ICI, . . . , kl, kN+# 

where the function @@-l) generalizing the function (4.5) is given by the formula 

(5.1) 

Here X denotes summation over the values of K* 1 1 . . ., K,*, KIT, . . ., K,I, rIr . . ., r,,,, for 

which the conditions rl -/- . . + r, = S - j, Kl(‘~J~~,‘@) f . . . f K,,,(l*J*Qs*)= ac~,r,m,+l hold. All 

summation indices in (5.1) take integral non-negative values and the derivatives are computed 

inthe operator sense. When r < S, the functions +, (I,, Jo, n(@t + ‘p,,, lpo, t), . . ., I,, . . . are 
purely periodic functions of time t, and can be determined uniquely using the method of 

successive approximations. 

Many more special cases can be studied in exactly the same manner, e.g. when degeneration 

occurs with respect to some of the variables in all the r (r<S) approximations. The results 

obtained here can be generalized to cover autonomous Hamiltonian systems. 

6. Appendix. We shall use the results obtained to investigate the periodic motions of 

a heavy rigid body about a fixed point., We assume that, dynamically, the body is nearly 

axisymmetric and its centre of mass lies near a fixed point. 

Retaining the notation of /3/, we write the equations of motion of the rigid body in the 

form of a canonical, single power system with Hamiltonian K 

m 
K(L 1. g)=&(L)+ 3 P°K,(L, 1, g) (6.1) 

0=1 

Ko=1/-2cl-L~(X-l), KI=-"l'L&~$ g, Is_ 

K1” FI aF1 
Kz=m -q +m do _; 

A-B A 
p = 7 , “=T 

Here p is a small parameter, A,B,C are the moments of inertia of the body, c1 is the 

energy constant, g plays the part of the independent variable and FI is represented by a 

known function of the Andoyer variables L,G,H, 2.g: 

Fl = fo.0 + fo.1 cm g + f2.0 CfJS 21 + fl.o cos (I + Xl + f,,, cos (I + 
g + 1) + f&, cos (1 - g i- h) 

The coefficients fij are determined, using the formulas given in /3/, as functions of 

the variables G,R. p (cost3 = L/G, cosp = H/G). 

When Ir=o, the periodic solution of the problem has the form 

L = u. l=ng+o, 
aK. n1 

“=-x=np=$ (ql,qzEZ) 

“i = a (x - I), “&, = 1/- 2c1- a*+ - 4) 

(6.2) 

Here a satisfies the condition of commensurability of the unperturbed frequencies )11 

and ng. o is an arbitrary constant. 
Using Poincar&'s conditions (3.2)-(3.5) the existence of periodic solutions of the 

problem in question was proved in /4/ for the case of commensurability nl = * ng. 

Using the results of Theorem 3, we shall show the existence of periodic solutions of 

problem (6.1), generated, in the case of the commensurabilities 1) nl =f.2%; 2) 3n1 = -&; 
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3) 2n1= fng from (6.2). 

The quantities n,o must satisfy, for these solutions, the conditions 

(6.3) 

Analysis of conditions (6.3) yields positive results with regard to the problem of the 
existence of periodic solutions of the problem for sufficiently small p in the case of the 
commensurabilities l)-3). For example, in the case of commensurability nl= 2n, we have 

CD,+* = %,a(% p, o)sin(o+i) 

al.2 (6, P, VP) = D sin2T [sina0 - sinap (1 + cos tl + 2cos%)] 

and conditions (6.3) hold when o+ h= O,x;Or,,(O,p,cp)# 0 (here cos 0 - al& (a), cos p = If/K,(a), H is 

an arbitrary constant and D = constiO,cp,h are the coordinates of the centre of mass of the 
body in the fixed coordinate system /3/). We have analogous formulas and arguments in the 
case of the commensurabilities 2), 3). 
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AVERAGING IN A QUASILINEAR SYSTEM WITH A STRONGLY VARYING FREQUENCY* 

L.D. AKULENKO 

The problem of the applicability of asymptotic averaging methods to single- 
frequency quasilinear systems are studied for the critics1 case. It is 
assumed that in the asymptotically large time interval under consideration 
the frequency (the derivative of the oscillation or rotational phase) is 
a slowly varying parameter allowing the singularity to be approximated 
by a power function of slow time or of a small parameter. The value of 
the frequence can vary strongly , can become arbitrarily small and equal 
to zero, and the "frequency" can even change its sign. Such situations 
arise when studying the oscillating and rotating systems, and particularly 
often in the problem of the control of specified objects /l/. The present 
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